Academic Course Description

BHARATH UNIVERSITY

Faculty of Science and Humanities
Department of Mathematics
BMA502 NUMERICAL METHODS

Fifth Semester (Odd Semester)

Course (catalog) description

From Unit I ultimatey results in finding the numerical solutions for eigen values and eigen vectors for square matrices. In Unit II ,we interpolate the unknown arguments between any given values ,in engineering applications this is called as smoothing functions. Unit III states polynomial approximation is quite accurate when we use numerical methods. Various numerical integration formula gives different approximation to this area. In unit IV many problems in science and engineering can be reduced to the problem of solving differential equation satisfying certain conditions. In unit V we obtain a unique solution of ODE and PDE'S subject to the certain specific conditions

Compulsory/Elective course: Compulsory for all branches except IBT,GEN.

Credit hours & contact hours : 4 & 75 hours

Course Coordinator : Dr.Ramya

Instructors : Dr.Ramya

Name of the instructor	Class handling	Office location	Office phone	Email (domain:@ bharathuniv.ac.in	Consultation
Dr.Ramya	Third year EEE	KS 3012	04422290125	hod.maths @ bharathuniv.ac.in	12.30-1.30 PM

Relationship to other courses:

Pre -requisites : BMA101 - Mathematics - I

Assumed knowledge : The students will have a mathematics background obtained at a high school (or Equivalent)

level. In particular, working knowledge of basic mathematics which interpolate and

extrapolate the values. It help us to find the numerical values for integration, differention,

ODE, PDE when initial boundary conditions are given.

Following courses : NUMERICAL METHODS

Computer usage: Nil

Professional component

General-0%Basic Sciences-100%Engineering sciences & Technical arts-00%Professional subject-0%

Broad area: Eigen values, Interpolation, Numerical integration and Differentiation, Initial value problems for ODE, Boundary value problems for ODE and PDE.

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	August 1 st week	Session 1 to 24	2 Periods
2	Cycle Test-2	September 2 nd week	week Session 25 to 48 2 Per	
3	Model Test	October 2 nd week	Session 1 to 60 3 Hrs	
University 4		ТВА	All sessions / Units	3 Hrs.
,	Examination			

Mapping of Instructional Objectives with Program Outcome

To develop problem solving skills and understanding of Mathematics. This course emphasizes:		Correlates to program outcome	
	Н	М	L
 To develop an understanding of the fundamentals in finding the solutions of the equation and to find the eigen vaue of the matrix 	b,c,d,j	a,f,k	e,g
2. To develop the ability to solve problems in Interpolation	b,c,f	a,d,g,h	j
3. To understand the concepts of Numerical Differentiation and Integration	a,d,e	b,g	j,k
4. To develop students problem solving techniques for Initial value problems for ODE	a,d,e	b,g,h,k	f,j
5. To learn the uses of Boundary value problems for ODE and PDE	а	a,b,c,d,g	j,k

Draft Lecture Schedule

Session	Topics	Problem solving (Yes/No)	Text / Chapter		
	UNIT I SOLUTION OF EQUATION AND EIGE	N VALUE PROBLEMS			
1.	ITERATION METHOD -INTRODUCTION	Yes			
2.	NEWTON RAPHSON METHOD FOR	Yes			
	SINGLE VARIABLE				
3.	PROBLEMS	Yes	T1]		
4.	SOLUTION OF LINEAR SYSTEM BY GEM	Yes	1		
5.	GAUSS JORDAN METHOD	Yes	1		
6.	GAUSS JACOBI METHOD	Yes	1		
7.	GUASS SIEDEL METHOD	Yes	1		
8.	PROBLEMS	Yes	1		
9.	INVERSE OF THE MATRIX BY GJM	Yes	_		
10.	EIGEN VALUE OF MATRIX BY POWER METHOD	Yes			
11.	EIGEN VALUE OF MATRIX BY GACOBI METHOD	Yes]		
12.	PROBLEMS	Yes			
	UNIT II INTERPOLATION(FINITE DIFFERENCE	CE)			
13.	FINITE DIFFERENCE-FORWARD TABLE	Yes			
14.	FINITE DIFFERENCE-BACKWARD TABLE	Yes]		
15.	PROBLEMS	Yes			
16.	NEWTONS FORWARD INTERPOLATION FORMULA	Yes			
17.	NEWTON BACKWARD INTERPOLATION FORMULA	Yes	[T2]		
18.	NEWTON'S DIVIDED DIFFERENCE FORMULA	Yes	_		
19.	PROBLEMS	Yes	_		
20.	LAGRANGES INTERPOLATION FORMULA	Yes	_		
21.	INVERSE INTERPOLATION	Yes	_		
22.	STIRLINGS FORMULA	Yes	1		
23.	BESSELS FORMULAA	Yes	1		
24.	PROBLEMS	Yes			
	UNIT III NUMERICAL DIFFERENTIATION AND INTEGRATION				
25.	NEWTONS FORWARD DIFFERENCE FORMULA TO GET THE DERIVATIVES	Yes			
26.	NEWTONS BACKWARD DIFFERENCE FORMULA TO GET THE DERIVATIVESW	Yes	1		

27.	TO FIND THE MAXIMA AND MINIMA OF	Yes	[T3]
	A FUNCTION GIVEN THE TABULAR		
20	VALUES		
28.	PROBLEMS	Yes	
29.	NUMERICAL INTEGRATION	Yes	
30. 31.	TRAPEZOIDAL RULE SIMPSONS ONE THIRD AND THREE	Yes	
31.	EIGTH RULE	Yes	
32.	PROBLEMS	yes	
33.	ROMBERGS METHOD	Yes	
34.	TRAPEZOIDAL RULE FOR DOUBLE	Yes	
	INTEGRATION		
35.	SIMPSONS RULE FOR	Yes	
	DOUBLEINTEGRATION		
36.	PROBLEMS	Yes	
	UNIT IV INTIAL VALUE PROBLEMS FOR	RODE	
37.	SOLUTIONS BY TAYLORS SERIES	Yes	
38.	TAYLORS SERIES-HIGHER ORDER	Yes	
	DIFFERENTIAL EQUATIONS		[#4]
20	ELLI EDG AND MODIFIED ELLI EDG	Vee	[T4]
39.	EULERS AND MODIFIED EULERS	Yes	
	METHOD		
40.	PROBLEMS	Yes	
41.	I AND II ORDER DIFFERENTIAL	Yes	
	EQUATIONS		
42.	RUNGE KUTTA METHOD	Yes	
43.	RUNGE KUTTA METHOD-HIGHER	Yes	
	ORDER DE		
44.	PROBLEMS	Yes	
45.	RK METHOD FOR SIMULTANEOUS FIRSR	Yes	
	ORDER EQUATION		
46.	MILENS PREDICTOR AND CORRECTOR	Yes	
	METHOD		
47.	ADAMS BASHFORTH PREDICTOR AND	Yes	
	CORRECTOR FORMULA		
48.	PROBLEMS	Yes	
	UNIT V BOUNDARY VALUE PROBLEM		
	FOR ODE AND PDE		
49.	CLASSIFICATION OF PDE OF SECOND	Yes	
	ORDER		
	ONDLIN		
50.	DIFFERENCE QUOTIENTS FORMULA	Yes	
51.	SOLUTION OF LAPALCE EQUATION	Yes	
	1		ı

52.	LIEBMANNS ITERATION PROCESS	Yes	
53.	PROBLEMS	Yes	
54.	DIAGONAL FIVE POINT FORMULA	Yes	
55.	STANDARD FIVE POINT FORMULA	Yes	[T5]
56.	PROBLEMS	Yes	
57.	BENDER SCHMIDT METHOD	Yes	
58.	CRANK NICHOLSON METHOD	Yes	
59.	HYPERBOLIC EQUATION	Yes	
60.	PROBLEMS	Yes	

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

Formal face-to-face lectures

Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.

Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

Cycle Test – I	-	05%
Cycle Test – II	-	05%
Model Test	-	10%
Attendance	-	05%
SEMINAR&ASSIGNMENT	-	05%
Final exam	-	70%

 $\label{prepared by: Dr. ramya, Assistant professor, Department} \label{eq: Dr. ramya, Assistant professor}$

of Mathematics Dated :

Addendum

ABET Outcomes expected	of araduates of B.Tech	/ EEE/ program b	v the time that thev	araduate:

(a) an ability to apply knowledge of mathematics, science, and engineering (b) an ability to design and conduct experiments, as well as to analyze and interpret data (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability (d) an ability to function on multidisciplinary teams (e) an ability to identify, formulate, and solve engineering problems (f) an understanding of professional and ethical responsibility (g) an ability to communicate effectively (h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context (i) a recognition of the need for, and an ability to engage in life-long learning (j) a knowledge of contemporary issues (k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. (1) an ability to recognize the need for, and an ability to engage in life-long learning

Course Teacher	Signature	
Dr.Ramya		

Course Coordinator HOD/EEE

(Dr.Ramya)